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Support for the Reality of Quarks
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There are still some doubts about the existence of quarks among a minority of
physicists who believe that they could merely represent a symmetry without
having a physical reality. This is because a rigorous element of reality for quarks
can only correspond to free observed quarks. An independent argument in favor
of the existence of quarks as real particles is given using a method based on
Mayer’s cluster expansion to calculate the critical temperature for a phase
transition of a nonideal quark–antiquark plasma to a hadron fluid.

1. INTRODUCTION

Although the theory of QCD has made considerable effort to describe
the world of the strong interaction, a rigorous proof which could show
without doubt the existence of quarks as real existing particles is lacking.
The analysis of jet experiments merely shows that QCD is correct and that
the observed events are sensitive to the color structure of quarks, but does
not rigorously prove the existence of quarks as real objective particles.
Quarks are confined inside the hadrons and cannot be observed individually.
The only hints which we have are (1) the parton model, which shows that
there must be pointlike particles inside the hadrons, and (2) the non-Abelian
symmetries of QCD and the corresponding perturbative field theory. But
regarding the first hint, we realize that the parton model itself does not
give us a closed and rigorous picture of the properties of these particles
as such. Perhaps, in the framework of this model, if we want to be cautious,
the particles inside the hadrons should still be called partons instead of
quarks. Regarding the second hint, one could still assert that quarks are
merely a representation or artifact of the non-Abelian symmetries and are
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not objects having an independent reality like particles or waves, and in
particular that the confinement problem is still unsolved to show us that
these objects indeed carry color charge. “The question of whether quarks,
gluons and colour are to be regarded as elements of reality has to be
decided on the basis of the observables, that is, without recourse to gauge
fields” (Buchholz, 1996; see also Haag, 1993). Buchholz recently has
shown on the basis of the Schwinger model that confinement is not necessar-
ily a result of gauge symmetries (Buchholz, 1996). So, one probably can
conclude that gauge symmetries are not a sufficient condition for confine-
ment. Or, in the words of Seiler, “Even though we often talk about quarks
and gluons as ‘particles’ we do not really mean it: The particles described
by QCD are supposed to be only hadrons” (Seiler, 1985).

Under such conditions, alternative methods that could confirm the exis-
tence of quarks as particles become essential. One of these methods can be
found in plasma physics. The advantage of plasma physical methods is that
we do not have to investigate one separate quark as, for example, particle
physicists do in scattering processes in a Wilson chamber. This cannot be
realized, since quarks are confined. But in a plasma, in principle, quarks can
be observed as free particles, because of asymptotic freedom. The situation
is similar in the well-investigated electron-ion plasma. From the interaction
forces between the particles there, via statistical and kinetic methods, predic-
tions can be made about the collective behavior of the plasma. Conversely,
from the collective behavior of the plasma, conclusions can be made about
the features of the particles inside the plasma.

The aim of the present paper is the following: using Mayer’s cluster
expansion method, we calculate the temperature where a nonideal quark–
antiquark plasma condenses into droplets of quark–antiquark pairs, i.e., into
a fluid of mesons. The process is similar to the formation of morning dew
from fog in the late night hours when the temperature falls. But the method
applied here is different than the one used to investigate droplet formation
of nucleons in heavy ion collisions. In the latter method, the probability of
droplet formation is estimated by calculating the change in the Gibbs free
energy of the system when a droplet appears, while in the former method
particles of the plasma cluster to droplets, i.e., the mesons are the droplets.
The method can be considered as a method to estimate the critical temperature
analytically on a heuristic basis independent of other models.

The obtained temperature where this process takes place is then com-
pared to the critical temperature calculated by conventional methods, like
finite-temperature QCD phase transitions (for a recent review of which see
Meyer-Ortmanns, 1996). If they agree, we have as an additional result another
independent confirmation in favor of the fact that the particle interpretation
of quarks can be entered in QCD through the use of Feynman rules for the
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gauge and matter fields. This conclusion can be made on the basis that the
cluster expansion method is independent from the latter method and considers
distinguished particles, like, for example, the electrons in an ordinary ionized
gas, which are treated classically there. Since a quark–gluon plasma exists
only under the condition of extreme high temperature, the neglect of quantum
mechanical corrections is justified and the quarks can be considered as classi-
cal particles. In particular, no assumptions about nonobservable statements
are made.

We apply this method to a plasma of heavy quarks, i.e., charms and
bottom, and consider the phase transition to J/c and Y mesons, respectively.
In these cases a nonrelativistic investigation will suffice. Considering only
heavy quarks and neglecting the thermodynamics of light quarks is justified
by the fact that light and heavy particles have different temperatures in a
plasma because the great difference between the masses make the exchange
of energy between the two kinds of particles difficult, as is well known
from conventional plasma physics (Lifshitz and Pitaevski, 1981). In a two-
component plasma consisting of a heavy and a light component, each compo-
nent can be considered in equilibrium separately although the plasma as a
whole is in a nonequilibrium state. This is because the relaxation time for
the whole plasma is much longer than the relaxation times for each component.
Investigating the formation of quark–antiquark clusters is also supported by
the existence of diquark correlations in a quark–gluon plasma (Anselmino
et al., 1993). Generally, it is believed that the late evolution of the quark–gluon
plasma is its hadronization at a critical temperature Tc. It should be noticed
here that in an actual QCD plasma the transition is driven by gluons and
light quarks. Heavy quarks are just external probes that feel the change in
the static potential. That is why charmonium dissociation is a thermometer
(Karsch et al., 1988). Hence the results obtained here are just estimations
representing a qualitative picture only. There are many papers using different
approaches based on lattice QCD, finite-temperature quantum field theory,
and phenomenological methods to calculate Tc. The lowest value for Tc for
a phase transition in QCD known to the author from the literature is Tc 5
103 6 32 MeV (Bonometto and Patano, 1993), where the uncertainty is due
to casual errors, and the largest value is Tc 5 260 MeV (Boyd et al., 1996).
The latter result is due to pure gauge theory. Recently, more exact results
for the phase transition of a light quark plasma to hadrons appeared in the
correponding literature. But here, we are considering a hypothetical plasma
made of heavy quarks and since we are in search of qualitative results only,
we take the first of the above results as a lower and the second as an upper
bound for Tc. Hence, if our hypothesis is correct, we expect that the results
obtained in this paper to lie within this range.
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2. DROPLET FORMATION BY CLUSTERING OF PARTICLES

To calculate the condensation temperature for clustering, we start with
a brief presentation of the mechanism used here for droplet formation by
clustering of particles: From Mayer’s cluster expansion method, we know
that for a nonideal gas the number of particles N and the pressure P are
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where T, V, and m are the temperature, volume, and chemical potential,
respectively, l 5 !2p/mT, m is the mass of the particles, and bl are the
cluster integrals
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where (xv means the summation over a connected complex and we define here
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i and j, U is the potential, and b 5 1/T. Hence, bl connects l particles.
Defining
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we obtain from (1)
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ml is the number of droplets, where each droplet contains l elementary
particles. From (2) we obtain

PV 5 N 8T with N 8 5 o
l

ml (7)

Equation (7) has the form of an equation of state for an ideal gas. N 8 is the
total number of droplets. Hence, the initial nonideal gas (the plasma) has
been phase-transformed to an ideal gas of droplets, where the latter can be
considered as a fluid in the sense of gas dynamic theory. This is the mechanism
we apply here.
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3. QUARKONIUM AS CLUSTERS OF QUARK–ANTIQUARKS
AND Tc

Since the formation of diquarks is energetically favorable for two quarks
in a spin-zero configuration, the deconfined quarks pair up in the plasma
(Ansemino et al., 1993, Sec. 5.D). It was also shown that weak nonleptonic
decays of ordinary quark–antiquark mesons are mediated by color-triplet
diquark virtual states (Anselmino et al., 1993, Sec. 3.C). These arguments
confirm the assumption that quarks and antiquarks cluster together as quark–
antiquark pairs when the plasma temperature falls below the deconfining point.

We consider a plasma consisting of charm–anticharm quarks, and as a
further investigation another plasma consisting of bottom–antibottom quarks.
We consider the phase transitions cc →J/c and bb → Y, respectively. It is
well known that the binding potential at zero temperature is given by the
one-gluon exchange contribution plus the linear confining part

V(r, 0) 5 2
a
r

1 sr (8)

where a is the coupling constant and s the string tension coefficient. This
is the so-called Cornell potential (Eichten et al., 1978, 1980), which in the
temperature environment is color-screened (Joos and Montvay, 1983) [we
use here the representation of U(r) from Karsch et al., (1988)]:

U(r) 5
s
v

(1 2 e2vr) 2
a
r

e2vr (9)

where v is the Debye screening length. We neglect spin forces as a first
approximation and assume that initially (for T . Tc) we have a homogeneous
nonideal quark–antiquark plasma without boundary. Hence, the total number
of quarks and antiquarks is N → ` and the volume V → `. The chemical
potential m of the quarks and antiquarks is to be taken zero, since in this
method after the phase transition the mesons are considered as droplets of
quark–antiquarks and hence there is no change in the particle number of the
quarks and antiquarks. From (5) follows then for the number of the droplets
of the quark–antiquark pairs

m2 5
Vb2

l6 (10)

Since we consider only the transition of a quark–antiquark plasma to mesons,
we have ml 5 0 for l Þ 2. Hence, we can write m2 5 N/2. Defining n 5
N/V as the number density of the particles in the plasma at the moment where
the phase transition takes place, we obtain from (10) for the temperature at
the moment of the droplet formation
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To calculate b2, first we separate from the potential U(r) in (9) the constant
term s/v. This will change no thermodynamic quantities, since they are
proportional to derivatives of the logarithm of the partition function. Hence,
constant terms in the potential factorize and cancel. Then, we obtain from
(9) and (3) for the quark–antiquark pairs and for V → `
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Since the integrand is zero at the two limits r → 0 and r → `, the integral
is convergent. We estimate this integral by some simple approximations: the
integral depends strongly on the behavior of the exponential function in the
exponent. We have

b1s
v

1
a
r2 e2vr À 1 for vr ¿ 1 (13)

b1s
v

1
a
r2 e2vr ¿ 1 for vr À 1 (14)

Hence, as an approximation, we can write
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The solutions of these integrals are tabulated in Gradshteyn and Ryshik
(1994). We obtain
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Since the plasma is assumed to be homogeneous, we can define an R as the
distance between two neighboring particles. Then the density of the plasma
becomes n 5 1/(4/3)p(R/2)3. If R at the moment of or shortly before the
phase transition is designated by Rc , we obtain from (11) and (16) a cubic
equation for Tc ,
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3
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c 2
36pv3

m3 R3
c

5 0 (17)

To solve this equation for Tc , we first have to fix the parameters. We have
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s 5 0.192 GeV2 and a 5 0.471 (Jacobs et al., 1986). It is known that for
T # 1.5Tc the spatial string tension can be considered as temperature indepen-
dent (Gubankova and Simonow, 1995). In the critical phase v was calculated
in Karsch et al. (1988). For J/c, vc 5 0.699 GeV and for Y, vc 5 1.565
GeV. The masses of the charm and bottom quarks are m 5 1.320 GeV and
m 5 4.746 GeV, respectively. To calculate (15), it remains to fix Rc or
equivalently the density of the quark–antiquark plasma in or shortly before
the critical phase. The dissociation radius for J/c and Y is also calculated in
Karsch et al. (1988). There, semiclassical calculations give Rc 5 0.87 fm
for J/c and Rc 5 0.33 fm for Y, whereas quantum mechanical calculations
lead to diverging radii when v → vc. Hence, concerning Rc , it is not clear
how to use these results. But, since we are approaching the critical point
from the plasma phase to the hadronized phase, we can apply the following
two simple arguments: (1) To form hadrons, the quarks must approach each
other within the range of the size of the hadrons. The typical size of a hadron
is about 1 fm, which is also the range of the strong force. (2) After the
droplets are formed, i.e., hadronization is completed, the hadron gas must
be free [in the model represented here, see Eq. (7)]; hence the hadrons cannot
come closer to each other than the range of the strong force, but at the same
time cannot be further from each other than this range, because then the
homogenity of the plasma shortly before the transition would break down.
This picture is also confirmed by the fact that the plasma phase region is the
region where P Þ 0, and when the plasma condenses to nuclear matter at
ordinary density the pressure becomes P 5 0 (Chaplin and Nauenberger,
1977). Nuclear matter in this case consists of matter where the nucleons lie
side by side, like balls poured into a vessel which is under a condition of
weightlessness. Hence, as a first approximation, we can set Rc 5 1 fm. With
this value, it follows from (17) that Tc 5 228 MeV for the formation of
J/c and Tc 5 111 MeV for the formation of Y (all other solutions are negative).
We see that both values lie within the range of 100–260 MeV, where a phase
transition generally is expected.

A question that should be clarified is the difference between the critical
temperatures of J/c and Y formation. Although both temperatures lie within
the range of the critical region, they differ by a factor two. Probably this is
in relation to the confinement radii of charm and bottom quarks, which can
be different. As mentioned previously, semiclassical calculations in Karsch
et al. (1988) result in a smaller dissociation radius for Y than for J/c. From
(11) it follows that the critical temperature increases when the dissociation
radius decreases, but is inversely proportional to the mass of the particles.
Hence, the critical temperatures could be assimilated. On the other hand,
physically, a lower critical temperature for the heavier particles is expected,
since the temperature of heavier particles in a nonequilibrium plasma usually
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is lower than that for lighter particles before equilibrium is reached. The
reason is that lighter particles initially absorb energy faster than heavier
particles because of inertia. Here, the dissociation radii were roughly approxi-
mated by general principles. More exact radii of course would result in more
exact values for the critical temperatures. But since both Tc lie within the
range of the temperature where a phase transition can be expected in general,
the hypothesis given at the beginning of the paper is fulfilled.

4. CONCLUSIONS

We have studied a nonideal quark–antiquark plasma consisting of charm
or bottom, which are heavy enough for the nonrelativistic approximation to
be applied. The plasma is assumed to be a classical gas of individual particles
with a “Coulomb” plus a confining potential. The assumption of a classical
gas can be made here because quantum statistics can be neglected in the
hadronic gas phase for Tc $ 50 MeV (Rafelski, 1982, Sec. 6.2). No quantum
field-theoretic symmetries or methods are applied. The obtained critical tem-
peratures lie within the range of results generally obtained from QCD. In
consideration of the classical nature of the method, the results obtained here
agree with the assumption that quarks are real existing particles. In other
words, we can conclude the following picture: At high temperature there can
exist a nonrelativistic plasma of heavy particles and antiparticles (which is
a classical gas due to the high temperature). This plasma can condense into
heavy mesons at a critical temperature. The particles are called quarks because
(1) they obey a confining potential and (2) the results are consistent with QCD.
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